Your  Full  Service  Arizona  Plumber
  





Solar Water Heating Specialists
APS Qualified Solar Hot Water Installer
Going Green $aves You Green

SUNEARTH SYSTEMS
ROC 258537
K-77 Dual Plumbing Including Solar

  Pressure Reducing Valves

If you live in an area with high water pressure, most likely you will have a pressure reducing valve (PRV) at a point before water from the city enters your house. A PRV saves you water and energy by reducing the amount of water used at various fixtures and appliances in your house. You save on actual water usage and waste water, you save on not having to heat that water, and you save on not having to repair piping systems that may be making banging sounds (water hammering) or void appliance warranties due to operating above their rated specifications.

 
Faucet with 10 minutes running timeHow much water are you wasting?

If you hear your pipes banging when you turn on a faucet or run an appliance, you may have a water hammering problem due to high water pressure. This can affect your plumbing in many ways. Your piping system can develop leaks (including slab leaks), your faucets may start to leak, and you may cause an appliance to fail (such as a water heater or washing machine).

The picture on the right shows a typical water service with a PRV installed. If the PRV shows signs of leaking such as calcium build-up, leaking, or rusting your PRV may need to be serviced or replaced.

You can test the water pressure with a gauge you can buy at your local hardware store, or you can have Gilbert Plumbing test it for you. Simply attach the gauge to the hose bib, make sure no other water is running in your house, and turn on the hose bib. Anything above 60 PSI is considered high water pressure and you need to have a PRV installed if you don't have one, or serviced if your PRV is malfunctioning.

Sometimes water pressure can change due to new construction in your neighborhood or city. If demand for more water is needed, water pressure is increased to meet the demand. Water pressure can often change during the day based on who is using the system to take showers or baths, landscaping, laundry, etc.

Gilbert Plumbing can help you if you suspect you have any of these problems caused by a lack of or failure of a PRV. We can diagnose and repair any plumbing problems you may have due to high water pressure or any other plumbing problems you may have. If your house has copper piping combined with high water pressure it's not a mater of if you are going to have problems. It's when you are going to have problems.

Water Service with PRV

Section 1007(b) of the Uniform Plumbing Code states in part:
Excessive Water Pressure - Where local water pressure is in excess of eighty (80) pounds per square inch, an approved type of pressure regulator shall be installed and the pressure reduced to eighty (80) pounds per square inch or less.



The following information was prepared by WATTS REGULATOR COMPANY

Questions and Answers about Water Pressure Reducing Valves

HOW THEY
 • Save WATER
 • Save ENERGY
 • Save WASTEWATER
 • Save MAINTENANCE

Water Pressure Reducing Valves Conserve Both Energy and Water “Automatically”.

The following information will familiarize you with water pressure reducing valves, also typically called regulators. It will emphasize that regulators are not only water pressure controls but are actually "primary conservation controls" which automatically conserve water and energy when used in high pressure areas.

INTRODUCTION
The supply of water and energy is one of our most critical national problems. If we cannot increase our supply, then it is imperative to reduce our consumption. Fortunately it's been proven that we can conserve dramatically and in a manner which will not seriously affect the lifestyles we have become used to. Water and energy conservation are so intimately intertwined that they are practically synonymous. Any reduction in the usage of water will automatically result in a reduction of the use of energy. What this means, therefore, is that our whole philosophy on the use of water is changing and we are finally recognizing that we have been
"water rich" over the years and it is now time to get back to reality by adjusting to our actual needs and to practice good conservation principles.

The purpose of this information is to acquaint you with a simple way to conserve water and energy. The hub of the program is the use of water pressure reducing valves (regulators), an automatic control which is installed at the water service in homes and other buildings to reduce the city main's pressure to a lower, more functional pressure (for most purposes 50 psi water pressure is adequate.) Regulators are simple inexpensive products that have a pay-back period of anywhere from 6 months to 12 months. As you will see on the following pages, they can save between 30,000 and 40,000-gallons of water per year in the average home alone. If these savings were applied to 1,000,000 typical homes throughout the country, consider the tremendous impact this would have on our national conservation goals. Thus, water and energy conservation, through the use of water pressure reducing
valves (regulators), is not only in the national interest but provides a significant benefit to the homeowner, the local water purveyor and energy utility as well. The higher the water pressure, the greater the amount of water that is wasted. (See question 5 for detailed explanation.)

1 - What is a Water Pressure Regulator?
Also called water pressure reducing valves, they are compact, inexpensive devices that perform two functions: (1) they automatically reduce the high incoming water pressure from the city mains to provide a lower, more functional pressure for distribution in the home; (2) they "regulate" by maintaining a set pressure in the home usually 50 psi -- thereby insuring that the home piping and appliances operate under a safe, more moderate, but satisfactory pressure.

Water Pressure 1

2 - What is water pressure?
When a fixture in a home is opened and water flows from it, it is because the water is "pushed." This "push" is pressure. The speed at which water flows from the opened outlet depends on the amount of "push" or pressure which exists at that time in the system. In short, the higher the pressure, the stronger the "push" behind the water.

Water Pressure 2

3 - What is wrong with high water pressure?
High water pressure, which is generally considered anything above 60 lbs., has some advantage, such as in firefighting systems. However, in the home plumbing system, it can be damaging because water, with a strong "push" behind it, can erode or wear away many materials and cause water heaters to leak, banging water pipes, dripping faucets, excessive dishwasher and clothes washer noise and breakdown, and leaking water pipes. Therefore, water flowing at a rate in excess of that necessary to satisfy normal fixture or appliance demands becomes damaging, wasteful and reduces the life expectancy of equipment in the system. But, most important to the average homeowner is that high water pressure can add to the cost of water, energy and waste water bills.

High Water Pressure Problems

4 - Does high water pressure cause “water hammer”?
Yes. Water hammer is simply the noise generated by the shocks of high-speed water flowing in a pipe when a fixture is suddenly closed. This abrupt stoppage causes a “bounce back” of the water and is called water hammer, causing banging pipes, noisy
systems and damage to appliances. It might be compared to driving your car at slow speed into a wall where the effect is negligible. However, if you drove the car at a much higher speed, the impact would be greater and, consequently, so would the bounce back or shock. Another description of the water hammer effect of high water pressure can be easily demonstrated. First, walk around a sharp corner and then run around the same corner. We can equate walking around the corner to a lower, more functional, controlled water pressure. However, when you run around the corner, the momentum forces your body to swing
in a wider, uncontrolled arc. This principles based on the fact that moving objects, and this includes water, tend to move in a straight line. They resist changes in direction. Therefore, in a home where the piping has many changes in direction, water hammer shock can be limited by reducing the water pressure.

Motion

5 - What is the difference in water flow from a fixture when the pressure is at 100 psi vs. a pressure of 50 psi?
Reducing the pressure from 100 psi to 50 psi will result in a saving of approximately 1/3 because 1/3 less water flows at this lower pressure. Remember, there is more "push" behind the water at 100 psi than at 50 psi and most of this water is wasted. Note the
illustration where almost twice as much water flows at 150 psi than 50 psi, most of which is wasted. A moderate savings would result if your supply pressure was reduced to 65 psi However, even at this lower pressure, savings with a regulator would be 20%.

6 - Are there any studies to support this savings figure?
Yes. In 1971 the Washington Suburban Sanitary Commission conducted a test program in 2,400 dwelling units that has attracted widespread interest from more than 40 states and various foreign countries. One of the devices used in their conservation
study was a water pressure regulator. It is interesting to note that their report concluded that in test locations using regulators, there was a water consumption reduction of 30% in October and November and 37% in December.

7 - Where are Water Pressure Regulators most commonly used?
Water pressure regulators are commonly installed at the meter in residential, commercial and industrial buildings. This location is desirable because it then controls the water pressure flowing to all appliances and outlets within the building and provides an inexpensive means of supplying lower, more functional water pressure to outlets and appliances.

8 - Why do we now call Regulators “Primary Conservation Controls”?
Most people have considered regulators as pressure controls because, as described in the foregoing, they are used to protect appliances and piping from the effects of high water pressure. However, because of water and energy shortage and cost problems, regulators have become increasingly more important because they automatically provide the advantage of
conserving water and energy.

Water Distribution

9 - How do Regulators save water?
As mentioned before, 1/3 less water flows at 50 psi than at 100 psi Therefore, when you reduce the city main pressure to a more moderate pressure of 50 psi, you can look forward to conserving up to 1/3, or more, of the water previously consumed. This will be
reflected on your water bills.

10 - How much does a typical family of four use?
A typical family of four uses an average of 255 gallons of water each day. This is broken down by: dishwashing - 15 gallons; cooking/drinking - 12 gallons; utility sink - 5 gallons laundry - 35 gallons; bathing - 80 gallons; bathroom sink - 8 gallons; toilet - 100 gallons. When you multiply this by a year, typical family usage totals 93,000 gallons of water. Your family particularly if it includes teenagers, would undoubtedly use more than the above averages.

Water Cycle

11 - How do Regulators affect the waste water system?
When we can save 1/3 of the water previously consumed, this also represents a similar saving of water which will not be going into the sewer system where it has to be treated. Water does not evaporate after we use it and it has to be piped to the wastewater
system. Many sewer bill taxes or surcharges are based on the amount of water you use, with the assumption that this water is going into the wastewater system. This is billed to you as a sewer surcharge and, in many cases, the sewer tax can equal
the water cost. Therefore, when pressure regulators save 1/3 of the metered water, they also contribute to saving up to 1/3 of the wastewater load and this is extremely important because it benefits both the user, by a lower sewer bill, and the community, as this is water they do not have to treat.

Down The Drain

12 - How do Water Pressure Regulators save on energy?
The Environmental Protection Agency estimates that 30% of the water used in households is heated. In order to heat this water, it takes energy. Logically, therefore, if a pressure regulator can reduce consumption by 1/3, we automatically cut down on the
amount of hot water we're using in lavatories and showers and, therefore, it follows that we automatically reduce the amount of energy required to heat that load. Thus, it can be easily seen that water conservation has a direct relationship to energy conservation. An average shower, for example, costs approximately 17 cents in energy and a shave with the faucet running cost 10 cents in energy.

13 - How do these savings benefit the water and energy utilities?
A high rise office building in Chicago was designed using water conservation products which resulted in savings of more than 3,000,000 gallons of water per year. This is significant in that the municipal water utility did not have to pump that extra gallonage, the water purification plant didn't have to treat it, the building itself saved on pumping of 3,000,000 gallons, and there must have been significant savings in energy by conserving hot water. Also, there were further savings by the fact that 3,000,000 gallons of
water, or the normal portion thereof, did not have to be distributed to the wastewater system and consequently the water treatment plant did not have to retreat this water. The heating of water takes energy and it should also be remembered that "pumping" water from one place to another also requires a considerable amount of energy.

Water Cycle

14 - How do Regulators save on maintenance?
We have previously described the effects of high water pressure on piping and appliances. By having these appliances work under a lower pressure, their life expectancy will be much longer. Use of lower pressure will also cut down on service calls caused by problems with dish washers and clothes washers, leaky water heaters, leaking water pipes and the potential water damage which could result.

15 - Do codes require Water Pressure Reducing Valves?
Yes. They are required by the Federal Housing Administration, the regional plumbing codes such as IAPMO, Southern Building Code, and BOCA, and numerous city and state codes. The requirement is that whenever the city main water pressure exceeds
80 psi, a regulator must be installed. However because of the recently acknowledged advantages of regulators conservation wise, regulators could be economically installed even where supply pressures are in the vicinity of 60 psi because of the water and
energy saving benefits they can provide.

16 - How long will a Regulator last?
Regulators have been described as "life-of-mortgage" products, because historically a malfunctioning pressure regulator is not replaced but simply cleaned or repaired via an inexpensive service kit. Design wise, it is similar to the kitchen faucet in that dirt or
foreign matter on the seating area can cause problems. Actually it is no more difficult to repair a regulator than it is to fix the kitchen faucet. (Please note that this is based on a national average. Arizona has harsher water which reduces the life expectancy of plumbing items, such as PRV's.)

17 - If I install a Pressure Regulator, what savings can I expect?
An average savings would be from $50 to $150 per year, probably much higher.
  A. Based on the fact that 1/3 less water flows at 50 psi than 100 psi, you can expect to save up to 1/3 of the water previously       consumed. As a typical family of four uses 93,000 gallons per year, that would mean a savings of approximately 30,000 gallons       of water. The higher the pressure, the higher the savings. Lower pressures result in less savings. (Your water company can       provide the rate.)
  B. Remember also, however, that 1/3 of the water used in homes is heated; so 1/3 of the 30,000 gallons of water saved divided       by 2 to reflect a cold water mixing factor would mean a savings in heating up to 5,000 gallons of hot water per year. If you       figure 4 cents to heat a gallon of water, the savings would be $200.00.
  C. You can also figure on a savings in your sewer surcharge bill, since most of the 30,000 gallons of water saved will not be going       into the wastewater system. Therefore, you would not be assessed for that disposal. (Contact your local authority for any
      assessment charges.)
  D. You would also have to figure the savings generated by not having to have appliances repaired or replaced more frequently.       This is a nebulous figure but, based on your own experience over the past years, you could look for a reduction in the       frequency of maintenance and certainly for an improved performance by these appliances.

18 - Should we consider using other water and energy conservation devices?
Certainly. The water pressure regulator we're talking about today is the hub of a conservation program; but you should also consider other flow control devices, low-flush toilets, improved water heating equipment and better disciplined usage habits. However, if none of these other devices were installed, the water pressure regulator would still serve to contribute important
and significant savings in energy and water. This would provide an average savings of anywhere from $50 to $150 per year, or more depending on your local rates.

19 - Do flow-restricting devices actually save water?
Yes, and they can effectively be installed on showerheads, fixtures and tankless heaters in boilers. Many showerheads, for example, supply water at a rate of 6 gpm. Applying a 3 gallon per minute flow restrictor will cut the flow in half providing savings in water and energy. It should be remembered however that their capacity is based on a "fixed" supply pressure like 50 psi and operating under a higher pressure will permit greater flow. That's why we say a water regulator is the "hub" of a program because it maintains a constant pressure throughout the home, thereby even improving the performance of flow-restricting devices.

20 - What are some tips the user can employ to save water and energy?
  1. Put a stopper in your sink or use a dishpan when you wash dishes. Washing with running water uses 30 gallons per meal.
  2. Keep a bottle of drinking water in the refrigerator -- running the water from the faucet until cold will waste a gallon.
  3. Wait until you have a full nine-pound wash before you run your washing machine. The average machine uses 50 gallons per       load.
  4. Turn the hot water off while you shave, and turn the cold water off while you brush your teeth. Shaving with a running faucet       uses about 20 gallons.
  5. Take showers instead of baths. The usual bath requires 36 gallons, the usual shower, only 25. Ten gallons is enough for a       shower if you turn it off while you lather.
  6. Don't use the toilet bowl to dispose of cigarette ashes, facial tissues, and other materials. A normal flush requires 5 - 8 gallons.
  7. Use dishwasher only when completely full.
  8. Fix dripping faucets promptly. Nearly two gallons can be wasted per day of dripping.
  9. Running toilets can waste four gallons per hour. Keep them in good repair.
10. THINK before you turn on the tap.
NOTE: Tips provided through courtesy of Plumbing Manufactures Institute.

Plumbing Tips

21- What does a Water Pressure Regulator cost?
There are, of course, different styles of regulators and various installation charges throughout the country. An estimate can be obtained from your local qualified plumbing contractor. To determine how much you, as an individual, would be saving, it would be necessary to consider the factors in question 17, in comparing with your current water and energy bills. See below for examples.

22 - How do I know if I have high water pressure?
A rule of thumb is: If you hear banging pipes in your home or observe water splashing in your sink, you probably have excessive pressure. However, for a precise reading, your local plumbing contractor or utility can test your pressure with a gauge.

23 - How can I get a Water Pressure Regulator installed?
The easiest way would be to call your local qualified plumbing contractor who can provide you with an estimate and also advise of the various type regulators available and the one best suited for your home. Although regulators are fairly simple to install and
could be a do-it-yourself project, there are some laws which provide that only a licensed plumbing contractor be permitted to work on the home potable drinking water system for health and safety purposes.

HOW TO FIGURE YOUR
(Refer to your annual water and energy bills for your specific rates and usage)
  1. WATER BILLS
      Cubic Feet of Water x Rate = Total Bill
      EXAMPLE:
      15,000 Cubic Feet x $ .90 P/C Cu. Ft. = (Approx. 112,000 Gallons)
      SAVINGS with Regulator -1/3 or 5,000 Cu. Ft. @ $ .90 P/C  Cu. Ft.
  2. SEWER ASSESSMENT
      Cubic Feet of Water x Rate = Total Bill
      EXAMPLE:
      15,000 Cubic Feet x $ .90 P/C Cu. Ft. = SAVINGS with Regulator -1/3 or 5,000 Cu. Ft. @ $ .90 P/C Cu. Ft.
  3. ENERGY COST (Approximately 1/3 of total water used is heated.)
      Gallons Water Heated 2 x $ .02 P/Gal.
      EXAMPLE:
      37,000 Gal. x .5 = 18,500 x $ .02 = SAVINGS with Regulator - Approx. 1/3 or 12,000 Gal. with additional adjustment factor of
      1/2 = 6,000 gal.
  4. MAINTENANCE
      Actual Maintenance Bill
      EXAMPLE:
      One "high-pressure" related service call @ $50.

Annual Bill
Approximate Annual
Savings with Regulators
Water
$135
$45
Sewer Assessment
$135
$45
Energy Cost
$370
$120
Maintenance
$50
$50
                     Total Potential Savings - $260




Twitter Logo   Facebook Logo

Site Map:

 
Home      About Us      Affiliates      Services      Quote      Photos      Plumbpedia™ - Videos & Show Notes      Plumbpedia™ - How Does It Work?
 

Contact Us      Testimonials      Copper / Polybutylene Repiping      HD Kitchen & Bath Collection      Green Products Center & Superstore
 
Rinnai Tankless Water Heaters      FAFCO Solar Water Heaters

Your Full Service Plumber Serving The Following Areas:
   Apache-Junction-Az   
Apache Junction
   Avondale-Az   
Avondale
   Buckeye-Az   
Buckeye
   Carefree-Az   
Carefree 
   Casa Grande, Az   
Casa Grande
   Cave-Creek-Az   
Cave Creek
   Chandler-Az   
Chandler
   Fountain-Hills-Az   
Fountain Hills
   Gilbert-Az   
Gilbert
   Glendale-Az   
Glendale
   Goodyear-Az   
Goodyear
   Litchfield-Park-Az   
Litchfield Park
   Maricopa-Az   
Maricopa
   Mesa-Az   
Mesa
    Paradise-Valley-Az    
Paradise Valley
   Peoria-Az   
Peoria 
   Phoenix-Az   
Phoenix
   Queen-Creek-Az   
Queen Creek
   Scottsdale-Az   
Scottsdale
   Sun-City-Az   
Sun City
   Surprise-Az   
Surprise 
   Tempe-Az   
Tempe 
   Tolleson-Az   
Tolleson